Polynomial Grothendieck properties

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polynomial Grothendieck Properties *

A Banach space E has the Grothendieck property if every (linear bounded) operator from E into c0 is weakly compact. It is proved that, for an integer k > 1, every k-homogeneous polynomial from E into c0 is weakly compact if and only if the space P(kE) of scalar valued polynomials on E is reflexive. This is equivalent to the symmetric k-fold projective tensor product of E (i.e., the predual of P...

متن کامل

Calculating Polynomial Runtime Properties

Affine size-change analysis has been used for termination analysis of eager functional programming languages. The same style of analysis is also capable of compactly recording and calculating other properties of programs, including their runtime, maximum stack depth, and (relative) path time costs. In this paper we show how precise (not just big-O) polynomial bounds on such costs may be calcula...

متن کامل

Grothendieck quasitoposes

Article history: Received 28 June 2011 Available online 31 January 2012 Communicated by Michel Van den Bergh

متن کامل

The expansion of Hall-Littlewood functions in the dual Grothendieck polynomial basis

A combinatorial expansion of the Hall-Littlewood functions into the Schur basis of symmetric functions was first given by Lascoux and Schützenberger, with their discovery of the charge statistic. A combinatorial expansion of stable Grassmannian Grothendieck polynomials into monomials was first given by Buch, using set-valued tableaux. The dual basis of the stable Grothendieck polynomials was gi...

متن کامل

Combinatorial Formulae for Grothendieck-demazure and Grothendieck Polynomials

∂if = f− sif xi − xi+1 where si acts on f by transposing xi and xi+1 and let π̃i = ∂i(xi(1− xi+1)f) Then the Grothendieck-Demazure polynomial κα, which is attributed to A. Lascoux and M. P. Schützenberger, is defined as κα = x α1 1 x α2 2 x α3 3 ... if α1 ≥ α2 ≥ α3 ≥ ..., i.e. α is non-increasing, and κα = π̃iκαsi if αi < αi+1, where si acts on α by transposing the indices. Example 2.1. Let α = (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Glasgow Mathematical Journal

سال: 1995

ISSN: 0017-0895,1469-509X

DOI: 10.1017/s0017089500031116